study-methods著者: 勉強応援ツール編集部

中学受験算数「速さ・時間・距離」の文章題が解けない子の特徴と対策

#速さ 時間 距離 苦手#速さの文章題 解けない#中学受験 速さの公式#速さの問題 教え方#算数 文章題 対策

中学受験算数の最難関分野の一つが「速さ・時間・距離」の文章題です。「公式は覚えているのに解けない」「何を求めているのか分からなくなる」というお子さんは少なくありません。


実は、速さの問題が解けない子には3つの共通パターンがあります。この記事では、それぞれのパターンごとに具体的な対策方法をご紹介します。


速さの問題が解けない子の3つの共通特徴




🧑

生徒さん

「速さの公式は覚えたんですけど、問題を見ると何をすればいいか分からなくなるんです...」


🦉

フクロウ博士

「よくある悩みじゃな。実は速さの問題が解けない子には、3つの典型的なパターンがあるんじゃよ。一つずつ見ていこう!」


特徴1: 公式を暗記しているだけで理解していない


「速さ = 距離 ÷ 時間」という公式を丸暗記していても、なぜその式になるのかを理解していないと応用が利きません。


よくある失敗例:

  • 問題文を見て、とりあえず数字を公式に当てはめる
  • 「求めるもの」と「分かっているもの」を整理せずに計算を始める
  • 公式を変形する必要がある問題で手が止まる

  • たとえば、「時速60kmで2時間走ったら何km進む?」という問題で、「60 ÷ 2 = 30km」と答えてしまうケースです。公式の意味が分かっていないため、どの数字をどこに入れるべきか判断できないのです。


    特徴2: 状況をイメージできていない


    速さの問題は、実際の移動を頭の中で思い描けるかどうかが重要です。しかし、多くの子は抽象的な数字の操作だけで解こうとしてしまいます。


    イメージ不足の典型例:

  • 「AさんとBさんがすれ違う問題」で、二人が同じ方向に進んでいると勘違いする
  • 「追いつく問題」で、先に出発した人がずっと止まっていると思い込む
  • ダイヤグラム(グラフ)を見ても、何が起きているのか理解できない

  • 実際の移動場面を想像できないと、問題文の条件を正しく式に落とし込めません。


    特徴3: 単位の変換でつまずく


    中学受験の速さの問題では、単位の変換が頻繁に必要になります。しかし、これが大きな壁になっている子が非常に多いのです。


    単位変換でのミス例:

  • 時速を分速に直せない(「時速60km = 分速1km」と勘違い)
  • 秒速を時速に変換する問題で混乱する
  • 問題文に「時速」と「分速」が混在していることに気づかない

  • たとえば、「時速60km」を「分速何km」に変換するには「60 ÷ 60 = 1km」と計算しますが、なぜ60で割るのかを理解していないと、毎回間違えてしまいます。


    ---


    「速さ = 距離 ÷ 時間」を体感で理解する方法


    公式の丸暗記から脱却するには、実際の体験と結びつけることが効果的です。


    実生活の例で理解させる


    「学校まで2kmの道のりを、20分かけて歩いた。時速何km?」


    この問題を解く前に、お子さんに聞いてみてください:

  • 「20分で2km歩いたら、速いと思う?遅いと思う?」
  • 「1時間(60分)歩き続けたら、何km進めそう?」

  • すると、「20分で2kmなら、60分だと6kmくらいかな」と感覚的に答えが見えてきます。これが「時速6km」という答えの意味です。


    公式「速さ = 距離 ÷ 時間」は、「1時間あたり(または1分あたり)どれだけ進むか」を求める式だと理解できれば、暗記ではなく納得につながります。


    「速さ」「時間」「距離」の関係を図で示す


    公式を3つのパターンで覚えるのではなく、三角形の図で覚える方法も有効です:


    ```

    距離

    -------

    速さ×時間

    ```


  • 距離を求めたい → 速さ × 時間
  • 速さを求めたい → 距離 ÷ 時間
  • 時間を求めたい → 距離 ÷ 速さ

  • 図を手で隠しながら、「求めたいもの」以外の2つを組み合わせる練習をすると、公式の変形がスムーズになります。




    🧑

    生徒さん

    「公式を変形するのが苦手だったんですけど、図で考えると分かりやすいですね!」


    🦉

    フクロウ博士

    「そうじゃろう。公式は丸暗記より、意味を理解することが大切なんじゃ。次はダイヤグラムの書き方を学ぼう!」


    ---


    ダイヤグラム(グラフ)の書き方と読み方


    速さの問題を視覚化する最強のツールがダイヤグラムです。これをマスターすれば、複雑な問題もスッキリ解けるようになります。


    ダイヤグラムの基本ルール


  • 横軸: 時間(分、時間)
  • 縦軸: 距離(m、km)
  • 直線の傾き: 速さを表す(急な傾き = 速い、緩やかな傾き = 遅い)

  • 実際に書いてみよう


    問題例: 「A君は午前9時に家を出発し、時速4kmで学校に向かった。学校まで2kmある。」


    1. 横軸に「9時、9時15分、9時30分...」と時刻を書く

    2. 縦軸に「0km、1km、2km」と距離を書く

    3. (9時, 0km)から直線を引く

    4. 2km進むのにかかる時間は? → 2 ÷ 4 = 0.5時間 = 30分

    5. (9時30分, 2km)に到着と分かる


    このグラフを書くことで、「いつ・どこにいるか」が一目瞭然になります。


    すれ違い問題・追いつき問題もダイヤグラムで解決


    「AさんとBさんが向かい合って進む」問題では:

  • Aさんの線とBさんの線を同じグラフに描く
  • 2本の線が交わる点 = すれ違う時刻と場所

  • これで複雑な条件も視覚的に整理できます。


    ---


    単位変換を徹底的にマスターする方法


    単位変換は、仕組みを理解すれば機械的にできるようになります。


    時速 → 分速 の変換


    「時速60km」を「分速」に直すには?


    考え方:

  • 1時間 = 60分
  • 60分で60km進む → 1分では60 ÷ 60 = 1km進む
  • よって分速1km

  • 公式化すると: 時速 ÷ 60 = 分速


    分速 → 時速 の変換


    「分速800m」を「時速」に直すには?


    考え方:

  • 1時間 = 60分
  • 1分で800m進む → 60分では800 × 60 = 48,000m = 48km進む
  • よって時速48km

  • 公式化すると: 分速 × 60 = 時速


    単位変換の練習問題を毎日解く


    単位変換は慣れが重要です。次のような問題を毎日3問ずつ解く習慣をつけましょう:


    1. 時速72kmを分速に直しなさい

    2. 分速900mを時速に直しなさい

    3. 秒速5mを時速に直しなさい


    最初は時間がかかっても、1週間続ければスムーズにできるようになります。


    ---


    実践的な解き方のコツ


    ステップ1: 問題文を図式化する


    問題文を読んだら、まず簡単な図を描く習慣をつけましょう。


  • 出発地点と到着地点を線で結ぶ
  • 人やモノを矢印で表す
  • 分かっている距離や時間を書き込む

  • これだけで、問題の全体像が見えてきます。


    ステップ2: 「求めるもの」と「分かっているもの」を整理


  • 求めるもの: 速さ? 時間? 距離?
  • 分かっているもの: 2つあれば解ける

  • この確認をしないと、「何を計算すればいいか分からない」という状態に陥ります。


    ステップ3: 単位を統一してから計算


    計算前に必ず単位をチェックしましょう。「時速」と「分速」が混在していたら、どちらかに揃えます。




    🧑

    生徒さん

    「図を描いて整理してから解くと、間違いが減りそうです!」


    🦉

    フクロウ博士

    「その調子じゃ!速さの問題は、焦らず丁寧に手順を踏むことが何より大切なんじゃよ。」


    ---


    まとめ: 速さの問題を克服するために


    速さの文章題が解けない子の特徴は以下の3つでした:


    1. 公式暗記型: 公式の意味を理解していない

    2. イメージ不足: 移動の様子を頭で思い描けない

    3. 単位変換ミス: 時速・分速・秒速の変換でつまずく


    それぞれの対策は:

  • 実生活の例で公式の意味を体感する
  • ダイヤグラムで問題を視覚化する
  • 単位変換の練習を毎日積み重ねる

  • 速さの問題は、中学受験算数の中でも特に「練習量」が結果に直結する分野です。焦らず、一つひとつの問題を丁寧に解いていきましょう。


    ---


    この記事の執筆について


    🦉

    執筆者

    学びツールズ編集部

    最終更新: 2025年11月

    中学受験算数の指導経験をもとに、保護者の方にも分かりやすく解説しました。

    速さの問題でお困りの際は、ぜひ参考にしてください。

    📚 おすすめの学習サービス

    受験勉強をさらに効率的に進めたい方におすすめのサービスをご紹介します。

    この記事の執筆について

    執筆方針

    この記事は、学術論文や公式データに基づき、学びツール.com編集部が作成しました。 情報の正確性を最優先し、定期的な更新を行っています。

    執筆者

    🦉
    学びツール.com編集部

    教育分野での経験を活かし、科学的根拠に基づいた学習情報を提供しています。

    更新履歴

    • 2025年11月: 初版公開
    • 2025年11月: 更新